Ultralong Bistable, Electrolytic MnO2‐Based, Electrochromic Battery Enabled by Porous, Low‐Barrier, Hydroxylated TiO2 Interface

Author:

Wang Weixuan1,Bai Zhiyuan1,Wang Baojun1,Yang Xiaorui1,Liu Juan2,Li Hao1,Li Yaogang3,Zhang Qinghong3,Hou Chengyi1,Li Kerui1ORCID,Wang Hongzhi1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

2. Shanghai Academy of Spaceflight Technology (SAST) Shanghai 201109 P. R. China

3. Engineering Research Center of Advanced Glasses Manufacturing Technology Ministry of Education Donghua University Shanghai 201620 P. R. China

Abstract

AbstractElectrochromic (EC) battery technology shows great potential in future “zero‐energy building” by controlling outdoor solar transmission to tune heat gain as well as storing the consumed energy to reuse across other building systems. However, challenges still exist in exploring an electrochemical system to satisfy requirements on both ultra‐long optical memory (also called bistability) without continuous power supply and high energy density. Herein, an EC battery is proposed to demonstrate ultra‐long bistability (>760 h) based on the reversible deposition and dissolution of manganese oxide (MnO2) without the addition of any mediators. A porous low‐barrier hydroxylated titanium dioxide (TiO2) interface is incorporated to synergistically enrich Mn2+‐affinity active sites for deposition and effectively reduce the electron transport barrier of MnO2 for dissolution, thereby significantly improving the reversibility, high optical modulation (60.2% at 400 nm), and energy density (352 mAh m−2). The modification strategy is also verified on the cathode‐less button cells with a much higher average coulombic efficiency (99.9%) compared to the batteries without the porous hydroxylated TiO2 interface (74.6%). These achievements lay a foundation for advancements in both electrochromism and Zn‐Mn aqueous batteries.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3