Affiliation:
1. Key Laboratory of Eco‐Textiles Ministry of Education Jiangnan University Wuxi 214122 P. R. China
2. College of Textiles and Clothing Yancheng Institute of Technology Yancheng Jiangsu 224051 P. R. China
3. Multiscale Materials Design Laboratory Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
Abstract
AbstractThis work focuses on multi‐stimuli‐responsive materials with distinctive abilities, that is, color‐changing and shape‐memory. Using metallic composite yarns and polymeric/thermochromic microcapsule composite fibers, processed via a melt‐spinning technique, an electrothermally multi‐responsive fabric is woven. The resulting smart‐fabric transfers from a predefined structure to an original shape while changing color upon heating or applying an electric field, making it appealing for advanced applications. The shape‐memory and color‐changing features of the fabric can be controlled by rationally controlling the micro‐scale design of the individual fibers in the structure. Thus, the fibers’ microstructural features are optimized to achieve excellent color‐changing behavior along with shape fixity and recovery ratios of 99.95% and 79.2%, respectively. More importantly, the fabric's dual‐response by electric field can be achieved by a low voltage of 5 V, which is smaller than the previously reported values. Above and beyond, the fabric is able to be meticulously activated by selectively applying a controlled voltage to any part of the fabric. The precise local responsiveness can be bestowed upon the fabric by readily controlling its macro‐scale design. A biomimetic dragonfly with the shape‐memory and color‐changing dual‐response ability is successfully fabricated, broadening the design and fabrication horizon of groundbreaking smart materials with multiple functions.
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献