High‐Performance Integrated Iontronic Circuits Based on Single Nano/Microchannels

Author:

Li Jun1,Li Mengqi2,Zhang Kaiping1,Hu Lide2,Li Dongqing1ORCID

Affiliation:

1. Department of Mechanical and Mechatronics Engineering University of Waterloo Waterloo ON N2L 3G1 Canada

2. Department of Marine Engineering Dalian Maritime University Dalian Liaoning 116026 China

Abstract

AbstractRecently, artificial channel‐based ionic diodes and transistors are extensively studied to mimic biological systems. Most of them are constructed vertically and are challenging to be further integrated. Several examples of ionic circuits with horizontal ionic diodes are reported. However, they generally require nanoscale channel sizes to meet the demand for ion‐selectivity, resulting in low current output and restricting potential applications. In this paper, a novel ionic diode is developed based on multiple‐layer polyelectrolyte nanochannel network membranes. Both bipolar and unipolar ionic diodes can be achieved by simply switching the modification solution. Ionic diodes with a high rectification ratio of ≈226 are achieved in single channels with the largest channel size of 2.5 µm. This design can significantly reduce the channel size requirement and improve the output current level of ionic devices. The high‐performance ionic diode with a horizontal structure enables the integration of advanced iontronic circuits. Ionic transistors, logic gates, and rectifiers are fabricated on a single chip and demonstrated for current rectification. Furthermore, the excellent current rectification ratio and the high output current of the on‐chip ionic devices highlight the promise of the ionic diode as a component of complex iontronic systems for practical applications.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3