High‐Activity Fe3C as pH‐Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc‐Air Battery

Author:

Ruan Qi‐Dong1,Feng Rui1,Feng Jiu‐Ju1,Gao Yi‐Jing2,Zhang Lu1ORCID,Wang Ai‐Jun1

Affiliation:

1. College of Geography and Environmental Sciences Key laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 P. R. China

2. Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine‐Containing Specialty Chemicals Institute of Advanced Fluorine‐Containing Materials Zhejiang Normal University Jinhua 321004 P. R. China

Abstract

AbstractTransition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3