Making Hidden Cell Particle Interactions Visible by Thermal Noise Frequency Decomposition

Author:

Jünger Felix1,Rohrbach Alexander12ORCID

Affiliation:

1. Laboratory for Bio‐ and Nano‐Photonics Department of Microsystems Engineering (IMTEK) University of Freiburg Georges‐Koehler‐Allee 102 79110 Freiburg Germany

2. CIBSS ‐ Centre for Integrative Biological Signaling Studies University of Freiburg Schänzlestr. 18 79104 Freiburg Germany

Abstract

AbstractThermal noise drives cellular structures, bacteria, and viruses on different temporal and spatial scales. Their weak interactions with their environment can change on subsecond scales. However, particle interactions can be hidden or invisible—even when measured with thermal noise sensitivity, leading to misconceptions about their binding behavior. Here, it is demonstrated how invisible particle interactions at the cell periphery become visible by MHz interferometric thermal noise tracking and frequency decomposition at a spectral update rate of only 0.5 s. The particle fluctuations are analyzed in radial and lateral directions by a viscoelastic modulus G(ω,tex) over the experiment time tex, revealing a surprisingly similar, frequency dependent response for different cell types. This response behavior can be explained by a mathematical model for molecular scale elasticity and damping. The method to reveal hidden interactions is tested at two examples: the stiffening of macrophage filopodia tips within 2 s with particle contact invisible by the fluctuation width. Second, the extent and stiffness of the soft cell glycocalyx is measured, which can be sensed by a particle only on microsecond‐timescales, but which remains invisible on time‐average. This concept study shows how to uncover hidden cellular interactions, if particle motions are measured at high‐speed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3