Simultaneously Geometrical and Electronic Modulation of L10‐PtZn by Trace Ge Boosts High‐performance Oxygen Reduction Reaction

Author:

Lu Shaojie1,Hu Yiping1,Xia Fanjie2,Yang Shaokang3,Jiang Shuaihu1,Zhou Yu1,Ma Dongsheng1,Zhang Wenjing4,Li Jing4,Wu Jinsong2,Rao Dewei3,Yue Qin1ORCID

Affiliation:

1. Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 610054 China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing NRC (Nanostructure Research Centre) Wuhan University of Technology Wuhan 430070 China

3. School of Materials Science and Engineering Jiangsu University Zhenjiang 212013 China

4. Department School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China

Abstract

AbstractDeveloping a highly active, durable, and low‐platinum‐based electrocatalyst for the cathodic oxygen reduction reaction (ORR) is for breaking the bottleneck of large‐scale applications of proton exchange membrane fuel cells (PEMFCs). Herein, ultrafine PtZn intermetallic nanoparticles with low Pt‐loading and trace germanium (Ge) involvement confined in the nitrogen‐doped porous carbon (Ge‐L10‐PtZn@N‐C) are reported. The Ge‐L10‐PtZn@N‐C exhibit superior ORR activity with a mass activity of 3.04 A mg−1Pt and specific activity of 4.69 mA cm–2, ≈12.2‐ and 10.2‐times improvement compared to the commercial Pt/C (20%) at 0.90 V in 0.1 m KOH. The cathodic catalyst Ge‐L10‐PtZn@N‐C assembled in the PEMFC shows encouraging peak power densities of 316.5 (at 0.86 V) and 417.2 mW cm–2 (at 0.91 V) in alkaline and acidic fuel‐cell, respectively. The combination of experiment and density functional theory calculations (DFT) results robustly reveal that the participation of trace Ge can not only trigger a “growth site locking effect” to effectively inhibit nanoparticle growth, bring miniature nanoparticles, enhance dispersion uniformity, and achieve the exposure of the more electrochemical active site, but also effectively modulates the electronic structure, hence optimizing the adsorption/desorption of the oxygen intermediates.

Funder

Fundamental Research Funds for the Central Universities

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3