Mechanistic Insights into the Stabilization of In Situ Formed γ‐NiOOH Species on Ni60Nb40 Nanoglass for Effective Urea Electro‐Oxidation

Author:

Sohel Amir12,Kovilakath Muhammed Safeer Naduvil1ORCID,Gogoi Palash J.12,Ansari Hasem3ORCID,Phukan Plabana4ORCID,Bag Soumabha4ORCID,John Neena S.12ORCID,Baksi Ananya3ORCID

Affiliation:

1. Centre for Nano and Soft Matter Sciences Bangalore Karnataka 562162 India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

3. Department of Chemistry Jadavpur University 188, Raja Subodh Chandra Mallick Road, Jadavpur Kolkata West Bengal 700032 India

4. Department of Industrial Chemistry Mizoram University Aizawl Mizoram 796004 India

Abstract

AbstractThe formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ‐formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface‐formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni60Nb40 Nanoglass showing stability toward the γ‐NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X‐ray photoelectron spectroscopy in contrast with the β‐NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ‐NiOOH predominantly follows a direct UOR mechanism while β‐NiOOH favors indirect UOR from time‐dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec−1 and stability for prolonged electrolysis (≈38 mA cm−2 for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ‐NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni‐based UOR catalysts and sheds light on the UOR mechanism.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3