Polyanion‐Type Na3V2(PO4)2F3@rGO with High‐Voltage and Ultralong‐Life for Aqueous Zinc Ion Batteries

Author:

Guan Jieduo1,Huang Qiaofeng1,Shao Lianyi1ORCID,Shi Xiaoyan1,Zhao DongDong2,Wang Liubin2ORCID,Sun Zhipeng1

Affiliation:

1. School of Materials and Energy Guangdong University of Technology Guangzhou Guangdong 510006 China

2. College of Chemistry and Environmental Science Key Laboratory of Analytical Science and Technology of Hebei Province Hebei University Baoding Hebei 071002 China

Abstract

AbstractAqueous zinc ion batteries (AZIBs) have attracted much interest in the next generation of energy storage devices because of their elevated safety and inexpensive price. Polyanionic materials have been considered as underlying cathodes owing to the high voltage, large ionic channels and fast ionic kinetics. However, the low electronic conductivity limits their cycling stability and rate performance. Herein, mesoporous Na3V2(PO4)2F3 (N3VPF) nanocuboids with the size of 80–220 nm cladded by reduced graphene oxide (rGO) have been successfully prepared to form 3D composite (N3VPF@rGO) by a novel and fast microwave hydrothermal with subsequent calcination strategy. The enhanced conductivity, strengthened pseudocapacitive behaviors, enlarged DZn2+, and stable structure guarantee N3VPF@rGO with splendid Zn2+ storage performance, such as high capacity of 126.9 mAh g‐1 at 0.5 C (1 C = 128 mA g‐1), high redox potentials at 1.48/1.57 V, high rate capacity of 93.9 mAh g‐1 at 20 C (short charging time of 3 mins) and extreme cycling stability with capacity decay of 0.0074% per cycle after 5000 cycles at 15 C. The soft package batteries also present preeminent performance, demonstrating the practical application values. In situ X‐ray diffraction, ex situ transmission electron microscopy and X‐ray photoelectron spectroscopy reveal a reversible Zn2+ insertion/extraction mechanism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3