Affiliation:
1. State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 P. R. China
2. Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractRedox‐active tetrathiafulvalene (TTF)‐based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two‐dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8‐connected TTF linker (TTF‐8CHO) is designed as a new building block for the construction of three‐dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF‐8CHO‐COF. In comparison to its 2D counterpart employing a 4‐connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm−2 808 nm laser, the oxidized 3D COF samples (@TTF‐8CHO‐COF and Au NPs@TTF‐8CHO‐COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well‐exposed TTF moieties.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献