Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy

Author:

Wen Hao1,Liu Yanyan23,Liu Shuling1,Peng Zhikun1,Wu Xianli1,Yuan Huiyu4,Jiang Jianchun2,Li Baojun1ORCID

Affiliation:

1. College of Chemistry Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China

2. Institute of Chemical Industry of Forest Products CAF National Engineering Lab. for Biomass Chemical Utilization Nanjing 210042 P. R. China

3. College of Science Henan Agricultural University 63 Agriculture Road Zhengzhou 450002 P. R. China

4. School of Materials Science and Engineering Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China

Abstract

AbstractAs the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a useful method for efficient handling and storage. Due to its excellent safety, formic acid stands out. It is worth noting that the matter and energy conversion is established based on formic acid, which is not referred to in the previous documentation. In this review, the latest development of research on heterogeneous catalysis via production and application of formic acid for energy application is reported. The matter and energy conversion based on formic acid are both discussed systematically. More importantly, with formic acid as the node, biomass energy shows potential to be in a dominant position in the energy conversion process. In addition, the catalytic mechanism is also mentioned. This review can provide the current state in this field and the new inspirations for developing superior catalytic systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3