Nanoconfined Supercooled Water in Hydrated Two‐Dimensional Polyaniline for Sub‐Zero Solid‐State Zinc‐Ion Hybrid Capacitor

Author:

Liang Jiaxing1234ORCID,Rawal Aditya5,Wang Biying3,Xiao Kefeng36,Lennon Alison7,Wang Da‐Wei123ORCID

Affiliation:

1. Faculty of Materials Science and Energy Engineering Shenzhen University of Advanced Technology Shenzhen 518071 China

2. Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518071 China

3. School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

4. CSIRO Manufacturing Clayton VIC 3168 Australia

5. Nuclear Magnetic Resonance Facility Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia

6. Shanghai Investigation Design and Research Institute Co., Ltd. (SIDRI) Shanghai 200335 China

7. School of Photovoltaic and Renewable Energy Engineering The University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractSolid‐state electrochemical energy systems have attracted numerous attentions for their excellent performance, high safety, and low cost. Recently, ice of aqueous electrolytes is reported as a new kind solid‐state electrolyte for low‐temperature solid‐state devices. However, the lack of kinetically favorable electrodes hampers the performance of this new class of icy electrolyte‐based solid‐state devices at sub‐zero temperatures. In this work, a hydrated layered polyaniline cathode active material (h‐LPANi) with nanoconfined supercooled water by metatungstate clusters is utilized to improve the performance of sub‐zero solid‐state zinc ion hybrid capacitors (ZIHCs). The interlayer confined hydrated network of h‐LPANi improves kinetics, surpassing pristine polyaniline and conventional porous carbon‐based active materials. At −15 °C, the solid‐state iced ZIHCs with h‐LPANi cathode demonstrate an areal energy density of 580.0 µWh cm−2 at 1.1 mW cm−2 and 155.7 µWh cm−2 at 43.3 mW cm−2, surpassing other low‐temperature solid‐state ZIHCs with conventional cathodes.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3