Carbonized Polymer Dots for Controlling Construction of MoS2 Flower‐Like Nanospheres to Achieve High‐Performance Li/Na Storage Devices

Author:

Al‐Ansi Nabilah12,Salah Abdulwahab12,Drmosh Qasem Ahmed3,Yang Guo‐Duo1,Hezam Abdo4,Al‐Salihy Adel5,Lin Jian1,Wu Xing‐Long1,Zhao Liang1,Zhang Jing‐Ping1,Wang Shao‐lei1,Sun Hai‐Zhu1ORCID

Affiliation:

1. Faculty of Chemistry National and Local United Engineering Laboratory for Power Batteries Northeast Normal University Changchun 130024 China

2. Department of Science Curricula & Teaching Methodologies Faculty of Education Sana'a University Sana'a Yemen

3. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC‐HES) Research Institute King Fahd University of Petroleum & Minerals (KFUPM) Dhahran 31261 Saudi Arabia

4. Leibniz‐Institute for Catalysis at the University of Rostock 18059 Rostock Germany

5. School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China

Abstract

AbstractDespite being one of the most promising materials in anode materials, molybdenum sulfide (MoS2) encounters certain obstacles, such as inadequate cycle stability, low conductivity, and unsatisfactory charge‐discharge (CD) rate performance. In this study, a novel approach is employed to address the drawbacks of MoS2. Carbon polymer dots (CPDs) are incorporated to prepare three‐dimensional (3D) nanoflower‐like spheres of MoS2@CPDs through the self‐assembly of MoS2 2D nanosheets, followed by annealing at 700 °C. The CPDs play a main role in the creation of the nanoflower‐like spheres and also mitigate the MoS2 nanosheet limitations. The nanoflower‐like spheres minimize volume changes during cycling and improve the rate performance, leading to exceptional rate performance and cycling stability in both Lithium‐ion and Sodium‐ion batteries (LIBs and SIBs). The optimized MoS2@CPDs‐2 electrode achieves a superb capacity of 583.4 mA h g−1 at high current density (5 A g−1) after 1000 cycles in LIBs, and the capacity remaining of 302.8 mA h g−1 after 500 cycles at 5 A g−1 in SIBs. Additionally, the full cell of LIBs/SIBs exhibits high capacity and good cycling stability, demonstrating its potential for practical application in fast‐charging and high‐energy storage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3