Affiliation:
1. Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology China Jiliang University Hangzhou 310018 China
2. Department of Applied Physics and Photonics Research Institute The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
Abstract
AbstractThe conventional sea water desalination technologies are not yet adopted worldwide, especially in the third world countries due to their high capital cost as well as large energy requirement. To solve this issue in a sustainable way an interfacial solar water evaporation device is designed and proposed in this article using the branches of Prunus serrulata (PB). The PB has abundant microchannels and shows excellent photothermal conversion capability after carbonization. Moreover, the easy access to raw materials and the facile fabrication process makes the solar water evaporating device very cost effective for seawater desalination application. Experiments show that in the presence of the fabricated evaporator the evaporation rate of water can reach 3.5 kg m−2 h−1 under 1 sun, which is superior to many similar experimental devices. In addition, its advantages, such as effective sewage purification capability, low cost, and environmental friendliness, make this evaporator highly competitive in the extensive promotion of this technology and can be considered as a new sustainable solution for seawater desalination with great application potential and prospects.
Funder
Natural Science Foundation of Zhejiang Province
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献