Scalable Fabrication of Nacre‐Structured Graphene/Polytetrafluoroethylene Films for Outstanding EMI Shielding Under Extreme Environment

Author:

Wei Qiyi12,Li Liang12,Deng Zhen12,Wan Gengping12,Zhang Ying12,Du Changlong12,Su Yanran12,Wang Guizhen12ORCID

Affiliation:

1. School of Chemical Engineering and Technology State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou Hainan 570228 China

2. School of Materials Science and Engineering Hainan University Haikou Hainan 570228 China

Abstract

AbstractIn this work, inspired by the great advantage of the unique “brick‐mortar” layered structure as electromagnetic interference (EMI) shielding materials, a multifunctional flexible graphene nanosheets (GNS)/polytetrafluoroethylene (PTFE) composite film with excellent EMI shielding effects, impressive Joule heating performance, and light‐to‐heat conversion efficiency is fabricated based on the self‐emulsifying process of PTFE. Both PTFE microspheres and nanofibers are employed together for the first time as “sand and cement” to build unique nacre‐structured EMI shielding materials. Such configuration can obviously enhance the adhesion of composites and improve their mechanical property for the application under extreme environment. Moreover, the simple and effective repetitive roll pressing method can be used for the scalable production in industrialization. The GNS/PTFE composite film shows a high EMI shielding effectiveness (SE) of 50.85 dB. Furthermore, it has a high thermal conductivity of 16.54 W (m K)−1, good flexibility, and recyclable properties. The excellent fire‐resistant and hydrophobic properties of GNS/PTFE film also ensure its reliability and safety in practical application. In conclusion, the GNS/PTFE film demonstrates the potential for industrial manufacturing, and outstanding EMI shielding performance with high stability and durability, which has a broad application prospect for electronic devices in practical extreme outdoor environments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3