Interfacial and Electronic Modulation of W Bridging Heterostructure Between WS2 and Cobalt‐Based Compounds for Efficient Overall Water Splitting

Author:

Yu Xin1,Li Yaxin1,Fang Tingting1,Gao Juan1ORCID,Ma Yurong1

Affiliation:

1. Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering Ministry of Industry and Information Technology MOE Key laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractThe development of high performance electrocatalysts for effective hydrogen production is urgently needed. Herein, three hybrid catalysts formed by WS2 and Co‐based metal–organic frameworks (MOFs) derivatives are constructed, in which the small amount of W in the MOFs derivatives acts as a bridge to provide the charge transfer channel and enhance the stability. In addition, the effects of the surface charge distribution on the catalytic performance are fully investigated. Due to the optimal interfacial electron coupling and rearrangement as well as its unique porous morphology, WS2@W‐CoPx exhibits superior bifunctional performance in alkaline media with low overpotentials in hydrogen evolution reaction (HER) (62 mV at 10 mA cm−2) and oxygen evolution reaction (OER) (278 mV at 100 mA cm−2). For overall water splitting (OWS), WS2@W‐CoPx only requires a cell voltage of 1.78 V at 50 mA cm−2 and maintains good stability within 72 h. Density functional theory calculations verify that the combination of W‐CoPx with WS2 can effectively enhance the activity of OER and HER with weakened OH (or O) adsorption and enhanced H atom adsorption. This work provides a feasible idea for the design and practical application of WS2 or phosphide‐based catalysts in OWS.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3