Spiky Magnetic Microparticles Synthesized from Microrod‐Stabilized Pickering Emulsion

Author:

Mu Yijiang1,Tran Hong‐Huy12,Xiang Zhenting2,Majumder Anirban1,Hsu Emery1,Steager Edward2,Koo Hyun2,Lee Daeyeon1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of Pennsylvania Philadelphia PA 19104 USA

2. School of Dental Medicine University of Pennsylvania Philadelphia PA 19104 USA

Abstract

AbstractTailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet‐chemical method is introduced for spiky magnetic particles that are templated from microrod‐stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil‐water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline‐based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.

Funder

Defense Sciences Office, DARPA

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3