Electrospinning Triboelectric Laminates: A Pathway for Scaling Energy Harvesters

Author:

Linarts Artis1ORCID,Sherrell Peter C.2ORCID,Mālnieks Kaspars3ORCID,Ellis Amanda V.2ORCID,Šutka Andris3ORCID

Affiliation:

1. Institute of Technical Physics Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 Latvia

2. School of Chemical and Biomedical Engineering Faculty of Engineering and Information Technology The University of Melbourne Parkville 3010 Australia

3. Institute of Materials and Surface Engineering Faculty of Materials Science and Applied Chemistry Riga Technical university Riga LV‐1048 Latvia

Abstract

AbstractHerein, a new paradigm of triboelectric polymers—the triboelectric laminate—a volumetric material with electromechanical response comparable to the benchmark soft piezoelectric material polyvinylidene difluoride is reported. The electromechanical response in the triboelectric laminate arises from aligned dipoles, generated from the orientation of contact electrification in the laminates bulk volume. The dipoles form between sequential bilayers consisting of two different electrospun polymer fibers of different diameter. The loose interface between the fiber bilayers ensures friction and triboelectric charging between two polymers. The electric output from the electrospun triboelectric laminate increases with increasing density of the bilayers. This system design has clear benefits over other flexible devices for mechanical energy harvesting as it does not require any poling procedures, and the electromechanical response is stable over 24 h of continuous operation. Moreover, the electromechanically responsive electrospun laminate can be made from all types of polymers, thus providing ample room for further improvements or functionalities such as stretchability, biodegradability, or biocompatibility. The concept of a triboelectric laminate can be introduced into existing triboelectric nanogenerator form factors, to dramatically increase charge harvesting of a variety of devices.

Funder

European Regional Development Fund

Australian National Fabrication Facility

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3