Functional Composite Dual‐Phase In Situ Self‐Reconstruction Design for High‐Energy‐Density Li‐Rich Cathodes

Author:

Ye Yun1,Yuan Shuang12ORCID,Zhang Shuhao1,Liu Tie3,Wang Jun4,Wang Qiang3

Affiliation:

1. School of Metallurgy Northeastern University Shenyang 110819 P. R. China

2. Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China

3. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education) Northeastern University Shenyang 110819 P. R. China

4. State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractThe unique anionic redox mechanism provides, high‐capacity, irreversible oxygen release and voltage/capacity degradation to Li‐rich cathode materials (LRO, Li1.2Mn0.54Co0.13Ni0.13O2). In this study, an integrated stabilized carbon–rock salt/spinel composite heterostructured layers (C@spinel/MO) is constructed by in situ self‐reconstruction, and the generation mechanism of the in situ reconstructed surface is elucidated. The formation of atomic‐level connections between the surface‐protected phase and bulk‐layered phase contributes to electrochemical performance. The best‐performing sample shows a high increase (63%) of capacity retention compared to that of the pristine sample after 100 cycles at 1C, with an 86.7% reduction in surface oxygen release shown by differential electrochemical mass spectrometry. Soft X‐ray results show that Co3+ and Mn4+ are mainly reduce in the carbothermal reduction reaction and participate in the formation of the spinel/MO rock‐salt phase. The results of oxygen release characterized by Differential electrochemical mass spectrometry (DEMS) strongly prove the effectiveness of surface reconstruction.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

State Key Laboratory of Solidification Processing

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3