All‐Solid‐State Mg–Air Battery Enhanced with Free‐Standing N‐Doped 3D Nanoporous Graphene

Author:

Xi Zeyu1ORCID,Han Jiuhui2ORCID,Jin Zeyu3,Hu Kailong3ORCID,Qiu Hua‐Jun34,Ito Yoshikazu1ORCID

Affiliation:

1. Institute of Applied Physics Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba 305‐8573 Japan

2. Tianjin Key Laboratory of Advanced Functional Porous Materials Institute for New Energy Materials and Low‐Carbon Technologies Tianjin University of Technology Tianjin 300384 China

3. School of Materials Science and Engineering and Institute of Materials Genome & Big Data Harbin Institute of Technology Shenzhen 518055 China

4. Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application Harbin Institute of Technology Shenzhen 518055 China

Abstract

AbstractNitrogen (N) doping of graphene with a three‐dimensional (3D) porous structure, high flexibility, and low cost exhibits potential for developing metal–air batteries to power electric/electronic devices. The optimization of N‐doping into graphene and the design of interconnected and monolithic graphene‐based 3D porous structures are crucial for mass/ion diffusion and the final oxygen reduction reaction (ORR)/battery performance. Aqueous‐type and all‐solid‐state primary Mg–air batteries using N‐doped nanoporous graphene as air cathodes are assembled. N‐doped nanoporous graphene with 50–150 nm pores and ≈99% porosity is found to exhibit a Pt‐comparable ORR performance, along with satisfactory durability in both neutral and alkaline media. Remarkably, the all‐solid‐state battery exhibits a peak power density of 72.1 mW cm−2; this value is higher than that of a battery using Pt/carbon cathodes (54.3 mW cm−2) owing to the enhanced catalytic activity induced by N‐doping and rapid air breathing in the 3D porous structure. Additionally, the all‐solid‐state battery demonstrates better performances than the aqueous‐type battery owing to slow corrosion of the Mg anode by solid electrolytes. This study sheds light on the design of free‐standing and catalytically active 3D nanoporous graphene that enhances the performance of both Mg–air batteries and various carbon‐neutral‐technologies using neutral electrolytes.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Tohoku University

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3