Mitigating Interfacial Capacity Fading in Vanadium Pentoxide by Sacrificial Vanadium Sulfide Encapsulation for Rechargeable Mg‐Ion Batteries

Author:

Mukherjee Ayan123ORCID,Chakrabarty Sankalpita12,Taragin Sarah12,Evinstein Eliran12,Bhanja Piyali3,Joshi Akanksha12,Aviv Hagit12,Perelshtein Ilana2,Mohapatra Mamata3,Basu Suddhasatwa4,Noked Malachi12ORCID

Affiliation:

1. Department of Chemistry Bar Ilan University Ramat Gan 5290002 Israel

2. Bar‐Ilan Institute of Nanotechnology and Advanced Materials Ramat Gan 5290002 Israel

3. CSIR‐Institute of Minerals and Materials Technology Bhubaneswar Bhubaneswar 713013 India

4. Department of Chemical Engineering Indian Institute of Technology Delhi Delhi 110015 India

Abstract

AbstractRechargeable Mg‐ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium‐ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride‐containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g−1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3