Affiliation:
1. Department of Orthopedics Xiangya Hospital Central South University Changsha 410008 China
2. Department of Ultrasound Diagnosis Second Xiangya Hospital Central South University Changsha 410012 China
3. Department of Orthopedics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 China
Abstract
AbstractAseptic loosening of prostheses is a highly researched topic, and wear particle‐induced macrophage polarization is a significant cause of peri‐prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs‐Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2‐Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2‐Exos and BMSCs‐Exos fused exosomes (M2‐BMSCs‐Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2‐BMSCs‐Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2‐BMSCs‐Exos can be used as a precise and reliable molecular drug for peri‐prosthetic osteolysis. Fused exosomes M2‐BMSCs‐Exos were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献