Boosting Polysulfide Redox Kinetics by Temperature‐Induced Metal‐Insulator Transition Effect of Tungsten‐Doped Vanadium Dioxide for High‐Temperature Lithium‐Sulfur Batteries

Author:

Liu Guo1,Zeng Qi2,Tian Shuhao2,Sun Xiao2,Wang Di2,Wu Qingfeng1,Wei Wei1,Wu Tianyu1,Zhang Yuhao1,Sheng Yanbin3,Tao Kun1,Xie Erqing1,Zhang Zhenxing1ORCID

Affiliation:

1. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China

2. School of Materials and Energy Lanzhou University Lanzhou 730000 China

3. Institute of Modern Physics Chinese Academy of Sciences Lanzhou 730000 China

Abstract

AbstractThe practical application of Li‐S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high‐temperature condition owing to the inevitable increase of polysulfides’ solubility and diffusion rate. Herein, tungsten‐doped vanadium dioxide (W‐VO2) micro‐flowers are employed with first‐order metal‐insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W‐VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature‐induced in‐suit MIT property endows the W‐VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid‐to‐solid conversion, and outstanding diffusion kinetics of Li‐ion under high temperatures. Benefiting from these advantages, the Li‐S batteries with W‐VO2 modified separator exhibit significantly improved rate and long‐term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase‐changing materials for high‐temperature Li‐S batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3