Strong Oxidizing Molten Salts for Strengthening Structural Restoration Enabling Direct Regeneration of Spent Layered Cathode

Author:

Xiao Zhiming1,Yang Yuxuan1,Li Yizhuo1,He Xinyou1,Shen Jixue1,Ye Long1,Yu Fangyong2,Zhang Bao1,Ou Xing1ORCID

Affiliation:

1. Engineering Research Center of the Ministry of Education for Advanced Battery Materials School of Metallurgy and Environment Central South University Changsha 410083 P. R. China

2. School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 P. R. China

Abstract

AbstractAs a mainstream technology for recycling spent lithium‐ion batteries, direct regeneration is rapidly developed due to its high efficiency and green characteristics. However, efficient reuse of spent LiNixCoyMn1‐xyO2 cathode is still a significant challenge, as the rock salt/spinel phase on the surface hinders the Li replenishment and phase transformation to the layered structure. In this work, the fundamental understanding of the repair mechanism is confirmed that the oxidizing atmosphere is the crucial factor that can greatly improve the rate and degree of phase restoration. Particularly, a ternary‐component molten salt system (LiOH‐Li2CO3‐LiNO3) is proposed for direct regeneration of LiNi0.5Co0.2Mn0.3O2 (NCM523), which can in situ generate the strong oxidizing intermediate of superoxide radicals. Additionally, it shows a liquid‐like reaction environment at a lower temperature to acceclerate the transport rate of superoxide‐ions. Therefore, the synergistic effect of LiOH‐Li2CO3‐LiNO3 system can strengthen the full restoration of rock salt/spinel phases and achieve the complete Li‐supplement. As anticipated, the regenerated NCM523 delivers a high cycling stability with a retention of 91.7% after 100 cycles, which is even competitive with the commercial NCM523. This strategy provides a facile approach for the complete recovery of layer structure cathode, demonstrating a unique perspective for the direct regeneration of spent lithium‐ion batteries.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3