Inducing Directional Charge Delocalization in 3D‐Printable Micro‐Supercapacitors Based on Strongly Coupled Black Phosphorus and ReS2 Nanocomposites

Author:

Ge Jiale1,Meng Jian1,Zhang Leiqian1,Qin Jingjing1,Yang Guozheng2,Wu Yunchen1,Zhu Haiyan1,Huang Yunpeng1,Debroye Elke3,Dong Hongliang4,Ren Jianguo5,He Peng5,Hofkens Johan36,Lai Feili23ORCID,Liu Tianxi1

Affiliation:

1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China

2. State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

3. Department of Chemistry KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium

4. Center for High Pressure Science and Technology Advanced Research Shanghai 201203 P. R. China

5. BTR New Material Group Co., LTD. Shenzhen 518107 P. R. China

6. Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

Abstract

AbstractThe growing interest in so‐called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS2) on exfoliated black phosphorus (E‐BP) nanosheets, creating an abundance of robust interfacial linkages. Through spectroscopic analysis using X‐ray photoelectron spectroscopy and X‐ray absorption spectroscopy, the authors investigate the interfacial environment. The well‐developed coupled interface and structural stability contribute to the impressive performance of the 3D‐printed E‐BP@ReS2‐based micro‐supercapacitor, achieving a specific capacitance of 47.3 mF cm−2 at 0.1 mA cm−2 and demonstrating excellent long‐term cyclability (89.2% over 2000 cycles). Furthermore, density functional theory calculations unveil the positive impact of the strongly coupled interface in the E‐BP@ReS2 nanocomposite on the adsorption of H+ ions, showcasing a significantly reduced adsorption energy of −2.17 eV. The strong coupling effect facilitates directional charge delocalization at the interface, enhancing the electrochemical performance of electrodes and resulting in the successful construction of advanced micro‐supercapacitors.

Funder

National Natural Science Foundation of China

European Research Council

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3