Electrolyte Solvation Chemistry for Stabilizing the Zn Anode via Functionalized Organic Agents

Author:

Zhang Yan1,Fu Xianwei2,Ding Yueling1,Liu Ye1,Zhao Yong1ORCID,Jiao Shilong1ORCID

Affiliation:

1. Key Lab for Special Functional Materials of Ministry of Education National Local Joint Engineering Research Center for High‐Efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China

2. Engineering Research Center for Nanomaterials National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials Henan University Kaifeng Henan 475004 P. R. China

Abstract

AbstractAs a potential candidate for grid‐scale energy storage technology, aqueous Zn‐ion batteries (ZIBs) have attracted considerable attention due to their intrinsic safety, environmental friendliness, and ease of fabrication. Nevertheless, the road to industry for this technique is hindered by serious issues, including undesired side reactions, random growth of the Zn dendrites, electrode passivation, and anode corrosion, which are associated with the high reactivity of water molecules during the electrochemical reactions. These challenges are strongly dependent on electrolyte solvation chemistry (ESC), which subsequently determines the electrochemical behavior of the metal ions and water molecules on the electrode surface. In this work, a comprehensive understanding of optimized ESC with specified functional groups on the mixing agents to stabilize the Zn anode is provided. First, the challenges facing the ZIBs and their chemical principles are outlined. Specific attention is paid to the working principles of the mixing agents with different functional groups. Then the recent progress is summarized and compared. Finally, perspectives on future research for the aqueous Zn batteries are presented from the point of view.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3