Low‐Energy Photons Dual Harvest for Photocatalytic Hydrogen Evolution: Bimodal Surface Plasma Resonance Related Synergism of Upconversion and Pyroelectricity

Author:

Fang Jiaojiao1,Wei Huimin1,Chen Yukai1,Dai Baoying1,Ni Yaru1,Kou Jiahui12ORCID,Lu Chunhua1,Xu Zhongzi1

Affiliation:

1. College of Materials Science and Engineering State Key Laboratory of Materials‐Orient Chemical Engineering Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P. R. China

2. National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 P. R. China

Abstract

AbstractUtilization of low‐energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low‐energy photons dual harvest through bimodal surface plasmon resonance (SPR)‐enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet–triplet annihilation upconversion (TTA‐UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd0.5Zn0.5S. Interestingly, the dual combination of TTA‐UC and AuNRs SPR in the presence of polyvinylidene fluoride substrate with pyroelectric property promotes the photocatalytic hydrogen evolution performance by 2.88 folds with the highest average apparent quantum yield of 7.0% under the low‐energy light (λ > 475 nm), which far outweighs the role of separate application of TTA‐UC (34%) and AuNRs SPR (76%). The presence of pyroelectricity plays an important role in the built‐in electric field as well as the accordingly photogenerated carrier behavior in the composite photocatalytic materials, and the pyroelectricity can be affected by AuNRs with different morphologies, which is proved by the Kelvin probe force microscopy and photocurrent data. This work provides a new avenue for fully utilizing low‐energy photons in the solar spectrum for improving photocatalytic performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3