2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping

Author:

Shim Sung Keun1ORCID,Jang Yoon Ho1ORCID,Han Janguk1,Jeon Jeong Woo1,Shin Dong Hoon1,Kim Yeong Rok1,Han Joon‐Kyu1,Woo Kyung Seok1,Lee Soo Hyung1,Cheong Sunwoo1,Kim Jaehyun1,Seo Haengha1,Shin Jonghoon1,Hwang Cheol Seong1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Inter‐university Semiconductor Research Center, College of Engineering Seoul National University Seoul 08826 Republic of Korea

Abstract

AbstractCompact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2‐memristor and 1‐capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single‐layer network. Analog input mapping ability is tested with a Mackey‐Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey‐Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.

Funder

National Research Foundation of Korea

Publisher

Wiley

Reference44 articles.

1. An experimental unification of reservoir computing methods

2. Reservoir computing approaches to recurrent neural network training

3. B.Schrauwen D.Verstraeten J.Van Campenhout inESANN 2007 Proc. –15th Eur. Symp. Artif. Neural Networks 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3