Affiliation:
1. Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of Education Dalian University of Technology Dalian 116024 China
2. School of Materials Engineering Purdue University West Lafayette 47907 USA
3. School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China
4. Department of Material Science and Engineering Frederick Seitz Material Research Laboratory University of Illinois at Urbana‐Champaign Urbana 61801 USA
Abstract
AbstractThe fundamental logic states of 1 and 0 in Complementary Metal‐Oxide‐Semiconductor (CMOS) are essential for modern high‐speed non‐volatile solid‐state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write‐verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non‐gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy‐induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non‐cumulative resistance effect allows non‐volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write‐verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next‐generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献