Solvation Effect: The Cornerstone of High‐Performance Battery Design for Commercialization‐Driven Sodium Batteries

Author:

Qiao Xianyan1,Chen Ting2,He Fa1,Li Haoyu1,Zeng Yujia1,Wang Ruoyang1,Yang Huan1,Yang Qing1,Wu Zhenguo1,Guo Xiaodong1ORCID

Affiliation:

1. School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China

2. Institute for Advanced Study Chengdu University Chengdu 610106 P. R. China

Abstract

AbstractSodium batteries (SBs) emerge as a potential candidate for large‐scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety. The solvent structure has significant impact on commercial applications. But so far, the solvation design of electrolyte and the practical application of sodium batteries have not been comprehensively summarized. This review first clarifies the process of Na+ solvation and the strategies for adjusting Na+ solvation. It is worth noting that the relationship between solvation theory and interface theory is pointed out. The cost, low temperature, fast charging, and safety issues of solvation are systematically summarized. The importance of the de‐solvation step in low temperature and fast charging application is emphasized to help select better electrolytes for specific applications. Finally, new insights and potential solutions for electrolytes solvation related to SBs are proposed to stimulate revolutionary electrolyte chemistry for next generation SBs.

Funder

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3