Space‐Confined Growth of Ultrathin P‐Type GeTe Nanosheets for Broadband Photodetectors

Author:

Qu Junyu1,Cheng Haodong1,Lan Huiping1,Zheng Biyuan1,Luo Ziyu1,Yang Xin1,Yi Xiao1,Wu Guangcheng1,Chen Shula1,Pan Anlian12ORCID

Affiliation:

1. Hunan Institute of Optoelectronic Integration Key Laboratory for Micro‐Nano Physics and Technology of Hunan Province College of Materials Science and Engineering Hunan University Changsha Hunan 410082 P. R. China

2. School of Physics and Electronics Hunan Normal University Changsha Hunan 410081 P. R. China

Abstract

AbstractAs p‐type phase‐change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two‐dimensional (2D) p‐type GeTe nanosheets are synthesized via a specially designed space‐confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space‐confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p‐type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature‐dependent electrical measurements demonstrate that variable‐range hopping and optical‐phonon‐assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W−1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near‐infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p‐type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

National Postdoctoral Program for Innovative Talents

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3