Dual Electronic Modulations on NiFeV Hydroxide@FeOx Boost Electrochemical Overall Water Splitting

Author:

Yao Haibin1,Le Fuhe1,Jia Wei1ORCID,Cao Yali1,Sheng Rui1,Lu Zhenjiang1,Chen Xianhao1,Jia Dianzeng1

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry College of Chemistry Xinjiang University Urumqi Xinjiang 830046 P. R. China

Abstract

AbstractNickel‐iron based hydroxides have been proven to be excellent oxygen evolution reaction (OER) electrocatalysts, whereas they are inactive toward hydrogen evolution reaction (HER), which severely limits their large‐scale applications in electrochemical water splitting. Herein, a heterostructure consisted of NiFeV hydroxide and iron oxide supported on iron foam (NiFeV@FeOx/IF) has been designed as a highly efficient bifunctional (OER and HER) electrocatalyst. The V doping and intimate contact between NiFeV hydroxide and FeOx not only improve the entire electrical conductivity of the catalyst but also afford more high‐valence Ni which serves as active sites for OER. Meanwhile, the introduction of V and FeOx reduces the electron density on lattice oxygen, which greatly facilitates desorption of Hads. All of these endow the NiFeV@FeOx/IF with exceptionally low overpotentials of 218 and 105 mV to achieve a current density of 100 mA cm−2 for OER and HER, respectively. More impressively, the electrolyzer requires an ultra‐low cell voltage of 1.57 V to achieve 100 mA cm−2 and displays superior electrochemical stability for 180 h, which outperforms commercial RuO2||Pt/C and most of the representative catalysts reported to date. This work provides a unique route for developing high‐efficiency electrocatalyst for overall water splitting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3