Oxygen Vacancy and Bandgap Simultaneous Modulation to Achieve High Lithiophilicity and Mechanical Strength of Lithium Metal Anodes

Author:

Wang Shuo1,Shi Haiting1,Liang Shuaitong2,Li Hao3,Xia Yuanhua3,Shao Ruiqi1,Li Tianyu1,Shi Jie1,Wu Xiaoqing1,Xu Zhiwei1ORCID

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering Tiangong University Tianjin 300387 China

2. International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhongyuan University of Technology Zhengzhou 450007 China

3. Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621999 China

Abstract

AbstractMetal oxides with conversion and alloying mechanisms are more competitive in suppressing lithium dendrites. However, it is difficult to simultaneously regulate the conversion and alloying reactions. Herein, conversion and alloying reactions are regulated by modulation of the zinc oxide bandgap and oxygen vacancies. State‐of‐the‐art advanced characterization techniques from a microcosmic to a macrocosmic viewpoint, including neutron diffraction, synchrotron X‐ray absorption spectroscopy, synchrotron X‐ray microtomography, nanoindentation, and ultrasonic C‐scan demonstrated the electrochemical gain benefit from plentiful oxygen vacancies and low bandgaps due to doping strategies. In addition, high mechanical strength 3D morphology and abundant mesopores assist in the uniform distribution of lithium ions. Consequently, the best‐performed ZnO‐2 offers impressive electrochemical properties, including symmetric Li cells with 2000 h and full cells with 81% capacity retention after 600 cycles. In addition to providing a promising strategy for improving the lithiophilicity and mechanical strength of metal oxide anodes, this work also sheds light on lithium metal batteries for practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3