Recent Advances and Perspectives on the Promising High‐Voltage Cathode Material of Na3(VO)2(PO4)2F

Author:

Yin Ya‐Meng1,Pei Cunyuan1,Xia Wei1,Luo Xiaojun1,Li Dong‐Sheng1ORCID

Affiliation:

1. College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China

Abstract

AbstractNa3(VO)2(PO4)2F (NVOPF) has emerged as one of the most promising cathode materials for sodium‐ion batteries (SIBs) attributed to its high specific capacity (130 mAh g−1), high operation voltage (>3.9 V vs Na+/Na), and excellent structural stability (<2% volume change). However, the comparatively low intrinsic electronic conductivity (≈10−7 S cm−1) of NVOPF leads to unsatisfactory electrochemical performance, especially at high rates, limiting its practical applications. To improve the conductivity and enhance Na storage performance, many efforts have been devoted to designing NVOPF, including morphology optimization, hybridization with conductive materials, metal‐ion doping, Na‐site regulation, and F/O ratio adjustment. These attempts have shown some encouraging achievements and shed light on the practical application of NVOPF cathodes. This work aims to provide a general introduction, synthetic methods, and rational design of NVOPF to give a deeper understanding of the recent progress. Additionally, the unique microstructure of NVOPF and its relationship with Na storage properties are also described in detail. The current status, as well as the advances and limitations of such SIB cathode material, are reported. Finally, future perspectives and guidance for advancing high‐performance NVOPF cathodes toward practical applications are presented.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3