Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis

Author:

Chen Lei1,Wang Hao−Yu1,Tian Wen−Wen1,Wang Lei1,Sun Ming−Lei1,Ren Jin−Tao1,Yuan Zhong−Yong1ORCID

Affiliation:

1. School of Materials Science Engineering Smart Sensing Interdisciplinary Science Center Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300350 China

Abstract

AbstractEfficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen‐based societies. While non‐precious‐metal‐based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel‐vanadium oxide nanosheet arrays grown on porous nickel foam (Ni‐V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni‐V2O3/PNF delivers 10 mA cm−2 at an overpotential of 54 mV for HER and a mass‐specific kinetic current of 19.3 A g−1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron‐deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non‐precious‐metal‐based electrocatalysts through the IEF strategy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3