Interface‐Engineered Atomic Layer Deposition of 3D Li4Ti5O12 for High‐Capacity Lithium‐Ion 3D Thin‐Film Batteries

Author:

Speulmanns Jan12ORCID,Bönhardt Sascha1,Weinreich Wenke1,Adelhelm Philipp23ORCID

Affiliation:

1. Center Nanoelectronic Technologies Fraunhofer Institute for Photonic Microsystems An der Bartlake 5 01109 Dresden Germany

2. Department of Chemistry Humboldt‐University Berlin Brook‐Taylor‐Strasse 2 12489 Berlin Germany

3. Joint research group Operando Battery Analysis (CE‐GOBA) Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany

Abstract

AbstractUpcoming energy‐autonomous mm‐scale Internet‐of‐things devices require high‐energy and high‐power microbatteries. On‐chip 3D thin‐film batteries (TFBs) are the most promising option but lack high‐rate anode materials. Here, Li4Ti5O12 thin films fabricated by atomic layer deposition (ALD) are electrochemically evaluated on 3D substrates for the first time. The 3D Li4Ti5O12 reveals an excellent footprint capacity of 20.23 µAh cm−2 at 1 C. The outstanding high‐rate capability is demonstrated with 7.75 µAh cm−2 at 5 mA cm−2 (250 C) while preserving a remarkable capacity retention of 97.4% after 500 cycles. Planar films with various thicknesses exhibit electrochemical nanoscale effects and are tuned to maximize performance. The developed ALD process enables conformal high‐quality spinel (111)‐textured Li4Ti5O12 films on Si substrates with an area enhancement of 9. Interface engineering by employing ultrathin AlOx on the current collector facilitates a required crystallization time reduction which ensures high film and interface quality and prospective on‐chip integration. This work demonstrates that 3D Li4Ti5O12 by ALD can be an attractive solution for the microelectronics‐compatible fabrication of scalable high‐energy and high‐power Li‐ion 3D TFBs.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3