Na2.5Cr0.5Zr0.5Cl6: A New Halide‐Based Fast Sodium‐Ion Conductor

Author:

Wang Likuo1,Song Zhenyou1,Lou Xiaobing2,Chen Yuwei1,Wang Tengrui1,Wang Zhongqiang1,Chen Huaican34,Yin Wen34,Avdeev Maxim56,Kan Wang Hay34,Hu Bingwen2,Luo Wei1ORCID

Affiliation:

1. Institute of New Energy for Vehicles School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

2. Shanghai Key Laboratory of Magnetic Resonance State Key Laboratory of Precision Spectroscopy School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China

3. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

4. Spallation Neutron Source Science Center Dongguan 523803 P. R. China

5. Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia

6. Australia e School of Chemistry The University of Sydney Sydney NSW 2006 Australia

Abstract

AbstractAll‐solid‐state batteries employing solid electrolytes (SEs) have received widespread attention due to their high safety. Recently, lithium halides are intensively investigated as promising SEs while their sodium counterparts are less studied. Herein, a new sodium‐ion conductor with a chemical formula of Na2.5Cr0.5Zr0.5Cl6 is reported, which exhibits high room temperature ionic conductivity of 0.1 mS cm−1 with low migration energy barrier of ≈0.41 eV. Na2.5Cr0.5Zr0.5Cl6 has a Fm‐3m structure with 41.67 mol.% of cationic vacancies owing to the occupation of Cr (8.33 mol.%) and Zr (8.33 mol.%) ions at Na sites. Supercell calculations show that the lowest columbic energy configuration has Cr/Zr/V (where V is the vacancy) clusters in the structure. Nonetheless, the clusters have mixed effects on the sodium ion conduction pathway, based on the Bond Valence Energy Landscape calculation. A global 3D Na‐ion transport percolation network can be revealed in the lowest energy supercell. Effective pathways are connected through the NaCl6 and VCl6 nodes. Besides, Raman spectroscopy and 23Na solid‐state nuclear magnetic resonance spectroscopy further prove the tunable structure of the SEs with different Cr to Zr ratios. The optimization between the concentration of Na+ and vacancies is crucial to create an improved network of Na+ diffusion channels.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3