One‐Step Fabricated Sn0 Particle on S‐Vacancies SnS2 to Accelerate Photoelectron Transfer for Sterling Photocatalytic CO2 Reduction in Pure Water Vapor Environment

Author:

Zhang Haoyu1,Mao Liang2,Wang Junyan3,Nie Yu3,Geng Zikang1,Zhong Dichang4,Tan Xin3,Ye Jinhua5,Yu Tao1ORCID

Affiliation:

1. School of Chemical Engineering and Technology Tianjin University No. 135, Yaguan Road Tianjin 300350 P. R. China

2. School of Materials Science and Physics China University of Mining and Technology Xuzhou 221116 P. R. China

3. School of Environmental Science and Engineering Tianjin University No. 135, Yaguan Road Tianjin 300350 P. R. China

4. Institute for New Energy Materialsand Low Carbon Technologies School of Materials Scienceand Engineering Tianjin University of Technology Tianjin 300384 P. R. China

5. International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba 305‐0047 Japan

Abstract

AbstractPromoting the proton‐coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S‐vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx2−) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S‐vacancies boost H2O adsorption while Sx2− increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g−1 h−1 without the addition of co‐catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S‐vacancies and Sx2− to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3