Performance Enhancement of Lead‐Free 2D Tin Halide Perovskite Transistors by Surface Passivation and Its Impact on Non‐Volatile Photomemory Characteristics

Author:

Chao I‐Hsiang1,Yang Yu‐Ting1,Yu Ming‐Hsuan1,Chen Chiung‐Han1,Liao Chwen‐Haw2,Lin Bi‐Hsuan3,Ni I‐Chih4,Chen Wen‐Chang15,Ho‐Baillie Anita W. Y.2,Chueh Chu‐Chen15ORCID

Affiliation:

1. Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan

2. School of Physics and University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia

3. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

4. Graduate Institute of Photonics and Optoelectronics National Taiwan University Taipei 10617 Taiwan

5. Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 106 Taiwan

Abstract

AbstractTwo‐dimensional (2D) tin (Sn)‐based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn‐based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+, leading to undesirable p‐doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4‐fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2SnI4) films, increases the grain size by surface recrystallization, and p‐dopes the PEA2SnI4 film to form a better energy‐level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo‐response, and higher mobility, for example, 2.96 cm2 V−1 s−1 for the FPEAI‐passivated films—four times higher than the control film (0.76 cm2 V−1 s−1). In addition, these perovskite transistors display non‐volatile photomemory characteristics and are used as perovskite‐transistor‐based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.

Funder

Ministry of Education

Australian Research Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3