Over 2 A cm−2 CO2‐to‐Ethanol Conversion by Alkali‐Metal Cation Induced Copper With Dominant (200) Facets

Author:

Peng Chen1,Yang Songtao1,Luo Gan2,Yan Shuai1,Shakouri Mohsen3,Zhang Junbo1,Chen Yangshen1,Wang Zhiqiang4,Wei Wei2,Sham Tsun‐Kong4,Zheng Gengfeng1ORCID

Affiliation:

1. Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 China

2. Henan Engineering Center of New Energy Battery Materials Henan D&A Engineering Center of Advanced Battery Materials College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China

3. Canadian Light Source Inc.  University of Saskatchewan Saskatoon SK S7N 2V3 Canada

4. Department of Chemistry University of Western Ontario 1151 Richmond Street London ON N6A 5B7 Canada

Abstract

AbstractThe high‐rate ethanol electrosynthesis from CO2 is challenging due to the low selectivity and poor activity, which requires the competition with other reduction products and H2. Here, the electrochemical reconstruction of Cs3Cu2Cl5 perovskite to form surface Cl‐bonded, low‐coordinated Cs modified Cu(200) nanocubes (CuClCs), is demonstrated. Density functional theory calculations reveal that the CuClCs structure possesses low Bader charges and a large coordination capacity; and thus, can promote the CO2‐to‐ethanol pathway via stabilizing C−O bond in oxygenate intermediates. The CuClCs catalyst exhibits outstanding partial current densities for producing ethanol (up to 2124 ± 54 mA cm−2) as one of the highest reported values in the electrochemical CO2 or CO reduction. This work suggests an attractive strategy with surface alkali‐metal cations for ampere‐level CO2‐to‐ethanol electrosynthesis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Education Commission

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3