Ni3C/Ni3S2 Heterojunction Electrocatalyst for Efficient Methanol Oxidation via Dual Anion Co‐modulation Strategy

Author:

Tao Jin‐Gang‐Lu1,Chen Jiaxu1,Zhao Bin2ORCID,Feng Renfei3,Shakouri Mohsen3,Chen Feng1ORCID

Affiliation:

1. Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China

2. Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China

3. Senior Scientist and Beamline Responsible in charge of a hard X‐ray microprobe facility at the Canadian Light Source Canadian Light Source Inc. Saskatoon Saskatchewan S7N 0X4 Canada

Abstract

AbstractEnhancing active states on the catalyst surface by modulating the adsorption–desorption properties of reactant species is crucial to optimizing the electrocatalytic activity of transition metal‐based nanostructured materials. In this work, an efficient optimization strategy is proposed by co‐modulating the dual anions (C and S) in Ni3C/Ni3S2, the heterostructured electrocatalyst, which is prepared via a simple hot‐injection method. The presence of Ni3C/Ni3S2 heterojunctions accelerates the charge carrier transfer and promotes the generation of active sites, enabling the heterostructured electrocatalyst to achieve current densities of 10/100 mA cm−2 at 1.37 V/1.53 V. The Faradaic efficiencies for formate production coupled with hydrogen evolution approach 100%, accompanied with a stability record of 350 h. Additionally, operando electrochemical impedance spectroscopy (EIS), in situ Raman spectroscopy, and density functional theory (DFT) calculations further demonstrate that the creation of Ni3C/Ni3S2 heterointerfaces originating from dual anions’ (C and S) differentiation is effective in adjusting the d‐band center of active Ni atoms, promoting the generation of active sites, as well as optimizing the adsorption and desorption of reaction intermediates. This dual anions co‐modulation strategy to stable heterostructure provides a general route for constructing high‐performance transition metal‐based electrocatalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3