In Situ Phase‐Transformation Forming a Bicontinuous (Ni, Co, Ti, and Al)‐Oxide/Li2CO3 Interpenetrating Network Electrolyte for Solid Oxide Fuel Cells

Author:

Liu Yanyan1ORCID,Ma Xiaochun1,Ye Hongjun1,Yan Jitong1,Tang Yongfu1,Ji Shaozheng2

Affiliation:

1. State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 P. R. China

2. Ultrafast Electron Microscopy Laboratory The MOE Key Laboratory of Weak‐Light Nonlinear Photonics School of Physics Nankai University Tianjin 300071 P. R. China

Abstract

AbstractDesigning heterogeneous electrolytes with superior interface charge transfer is promising for low‐temperature solid oxide fuel cells (LT‐SOFCs). However, a rational construction with optimal interfaces to maximize ionic conduction remains a challenge. Here an in situ phase‐transformation strategy is demonstrated to prepare a highly conductive heterogeneous electrolyte. A pristine LiNiO2‐TiO2 nanocomposite precursor undergoes chemical reactions and phase‐transformation upon heating and feeding H2, destroying the original phases, and forming new species, including an amorphous Li2CO3 scaffold within a (Ni, Co, Al, and Ti)‐oxide (NCAT) matrix. It creates an intertwining and continuous network inside the electrolyte with plentiful interfaces. The in situ formed NCAT/Li2CO3 heterogeneous electrolyte displays superior ionic conductivity and impressive fuel cell performance. This work emphasizes the potential of rational heterogeneous structure design and interface engineering for LT‐SOFC electrolyte through an in situ phase‐transform approach. The generated interfaces enhance ion transport, presenting an opportunity for further optimizing electrolyte candidates, and lowering the operating temperatures of SOFCs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fok Ying Tong Education Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3