Optimizing d‐Orbital Electronic Configuration via Metal–Metal Oxide Core–Shell Charge Donation for Boosting Reversible Oxygen Electrocatalysis

Author:

Wu Wei1,chen Runzhe1,Chen Suhao1,Wang Zichen1,Cheng Niancai12ORCID

Affiliation:

1. College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China

2. Key Laboratory of Fuel Cell Technology of Guangdong Province Guangzhou 510641 China

Abstract

AbstractTuning the d‐orbital electronic configuration of active sites to achieve well‐optimized adsorption strength of oxygen‐containing intermediates toward reversible oxygen electrocatalysis is desirable for efficient rechargeable Zn‐Air batteries but extremely challenging. Herein, this work proposes to construct a Co@Co3O4 core–shell structure to regulate the d‐orbital electronic configuration of Co3O4 for the enhanced bifunctional oxygen electrocatalysis. Theoretical calculations first evidence that electron donation from Co core to Co3O4 shell could downshift the d‐band center and simultaneously weak spin state of Co3O4, result in the well‐optimized adsorption strength of oxygen‐containing intermediates on Co3O4, thus contributing a favor way for oxygen reduction/evolution reaction (ORR/OER) bifunctional catalysis. As a proof‐of‐concept, the Co@Co3O4 embedded in Co, N co‐doped porous carbon derived from thickness controlled 2D metal‐organic‐framework is designed to realize the structure of computational prediction and further improve the performance. The optimized 15Co@Co3O4/PNC catalyst exhibits the superior bifunctional oxygen electrocatalytic activity with a small potential gap of 0.69 V and a peak power density of 158.5 mW cm−2 in ZABs. Moreover, DFT calculations shows that the more oxygen vacancies on Co3O4 contribute too strong adsorption of oxygen intermediates which limit the bifunctional electrocatalysis, while electron donation in the core–shell structure can alleviate the negative effect and maintain superior bifunctional overpotential.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3