Tailoring Advanced CdS Anisotropy‐Driven Charge Spatial Vectorial Separation and Migration via In Situ Dual Co‐Catalyst Synergistic Layout

Author:

Li Teng12ORCID,Wang Xuanpu1,Jin Zhiliang1ORCID,Tsubaki Noritatsu2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering North Minzu University Yinchuan 750021 P. R. China

2. Department of Applied Chemistry Graduate School of Engineering University of Toyama Gofuku 3190 Toyama 930–8555 Japan

Abstract

AbstractTailoring advanced anisotropy‐driven efficient separation and migration of photogenerated carriers is a pivotal stride toward enhancing photocatalytic activity. Here, CdS‐MoS2 binary photocatalysts are tailored into a dumbbell shape by leveraging the rod‐shaped morphology of CdS and employing an in situ tip‐induction strategy. To further enhance the photocatalytic activity, an in situ photo‐deposition strategy is incorporated to cultivate MnOx particles on the dumbbell‐shaped CdS‐MoS2. The in situ deposition of MnOx effectively isolated the oxidatively active sites on the CdS surface, emphasizing the reductively active crystalline face of CdS, specifically the (002) face. Benefiting from its robust activity as a reduction active site, MoS2 adeptly captures photogenerated electrons, facilitating the reduction of H+ to produce hydrogen. The anisotropically driven separation of CdS photogenerated carriers markedly mitigates the Coulomb force or binding force of the photogenerated electrons, thus promoting a smoother migration toward the active site for photocatalytic hydrogen evolution. The hydrogen evolution rate of 35MnOx‐CdS‐MoS2‐3 surpasses that of CdS by nearly an order of magnitude, achieving a quantum efficiency of 22.30% at 450 nm. Under simulated solar irradiation, it attains a rate of 42.86 mmol g−1 h−1. This work imparts valuable insights for the design of dual co‐catalysts, anisotropy‐driven spatial vectorial charge separation and migration, and the analysis of migration pathways of photogenerated carriers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3