Continuous Vat Photopolymerization for Optical Lens Fabrication

Author:

Xu Han12,Chen Shuai13,Hu Renzhi13,Hu Muqun3,Xu Yang12,Yoon Yeowon13,Chen Yong123ORCID

Affiliation:

1. Center for Advanced Manufacturing University of Southern California Los Angeles CA 90007 USA

2. Daniel J. Epstein Department of Industrial and Systems Engineering University of Southern California Los Angeles CA 90089 USA

3. Department of Aerospace and Mechanical Engineering University of Southern California Los Angeles CA 90089 USA

Abstract

AbstractOptical lenses require feature resolution and surface roughness that are beyond most (3D) printing methods. A new continuous projection‐based vat photopolymerization process is reported that can directly shape polymer materials into optical lenses with microscale dimensional accuracy (< 14.7 µm) and nanoscale surface roughness (< 20 nm) without post‐processing. The main idea is to utilize frustum layer stacking, instead of the conventional 2.5D layer stacking, to eliminate staircase aliasing. A continuous change of mask images is achieved using a zooming‐focused projection system to generate the desired frustum layer stacking with controlled slant angles. The dynamic control of image size, objective and imaging distances, and light intensity involved in the zooming‐focused continuous vat photopolymerization are systematically investigated. The experimental results reveal the effectiveness of the proposed process. The 3D‐printed optical lenses with various designs, including parabolic lenses, fisheye lenses, and a laser beam expander, are fabricated with a surface roughness of 3.4 nm without post‐processing. The dimensional accuracy and optical performance of the 3D‐printed compound parabolic concentrators and fisheye lenses within a few millimeters are investiagted. These results highlight the rapid and precise nature of this novel manufacturing process, demonstrating a promising avenue for future optical component and device fabrication.

Funder

University of Southern California

National Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3