Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots

Author:

Jacobse Peter H.1ORCID,Sarker Mamun23ORCID,Saxena Anshul45,Zahl Percy6ORCID,Wang Ziyi178,Berger Emma1ORCID,Aluru Narayana R.45ORCID,Sinitskii Alexander23ORCID,Crommie Michael F.178ORCID

Affiliation:

1. Department of Physics University of California, Berkeley Berkeley CA 94720 USA

2. Department of Chemistry University of Nebraska Lincoln NE 68588 USA

3. Nebraska Center for Materials and Nanoscience University of Nebraska‐Lincoln Lincoln NE 68588 USA

4. Walker Department of Mechanical Engineering University of Texas Austin TX 78712 USA

5. Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin TX 78712 USA

6. Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA

7. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

8. Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

AbstractCarbon‐based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom‐up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high‐resolution atomic force microscopy (HR‐AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin‐degree of freedom in carbon‐based nanostructures.

Funder

National Science Foundation

Office of Science

Office of Naval Research

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3