Signal Amplification by Spatial Concentration for Immunoassay on Cellulose Media

Author:

Kim Hyeokjung1ORCID,Noh Hyeran1ORCID

Affiliation:

1. Department of Optometry Seoul National University of Science and Technology Seoul 01811 South Korea

Abstract

AbstractImmunoassay is one of the most common bioanalytical techniques from lab‐based to point‐of‐care settings. Over time, various approaches have been developed to amplify signals for greater sensitivity. However, the need for effective, versatile, and simple signal amplification methods persists yet. This paper presents a novel signal amplification method for immunoassay that utilizes spatial concentration of a cellulose‐based plate possessing sensor transducers, specifically gold nanoparticles. By modifying the dimensions of the plate, the density of nanoparticles increased, resulting in intensified color signals. The coating material, polydopamine, which is utilized to protect the gold nanoparticles. Chemical changes in nanocomposites are characterized using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and scanning electron microscopy. The application of this method to colorimetric quantification demonstrated great consistency across various concentrations of nanoparticles, with better reliability at lower concentration ranges. A model immunoassay is designed to evaluate the analytical performance. As a result, this method successfully corrected a false‐negative result with a lowered Kd of 0.509 pmol per zone. This method shows strong signal enhancement capability that can correct false‐negative signals in the immunoassays, with potential benefits including versatility, simplicity, low cost, and the ability to operate multiple plates simultaneously.

Funder

Seoul National University of Science and Technology

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3