Engineering Self‐Adaptive Multi‐Response Thermochromic Hydrogel for Energy‐Saving Smart Windows and Wearable Temperature‐Sensing

Author:

Xie Long1,Wang Xuechuan12,Zou Xiaoliang2,Bai Zhongxue2,Liang Shuang2,Wei Chao1,Zha Siyu1,Zheng Manhui2,Zhou Yi2,Yue Ouyang2,Liu Xinhua2ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China

2. College of Bioresources Chemical and Materials Engineering Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China

Abstract

AbstractBuildings account for ≈40% of the total energy consumption. In addition, it is challenging to control the indoor temperature in extreme weather. Therefore, energy‐saving smart windows with light regulation have gained increasing attention. However, most emerging base materials for smart windows have disadvantages, including low transparency at low temperatures, ultra‐high phase transition temperature, and scarce applications. Herein, a self‐adaptive multi‐response thermochromic hydrogel (PHC‐Gel) with dual temperature and pH response is engineered through “one‐pot” integration tactics. The PHC‐Gel exhibits excellent mechanical, adhesion, and electrical conductivity properties. Notably, the low critical solubility temperature (LCST) of PHC‐Gel can be regulated over a wide temperature range (20–35 °C). The outdoor practical testing reveals that PHC‐Gel has excellent light transmittance at low temperatures and radiation cooling performances at high temperatures, indicating that PHC‐Gel can be used for developing energy‐saving windows. Actually, PHC‐Gel‐based thermochromic windows show remarkable visible light transparency (Tlum ≈ 95.2%) and solar modulation (△Tsol ≈ 57.2%). Interestingly, PHC‐Gel has superior electrical conductivity, suggesting that PHC‐Gel can be utilized to fabricate wearable signal‐response and temperature sensors. In summary, PHC‐Gel has broad application prospects in energy‐saving smart windows, smart wearable sensors, temperature monitors, infant temperature detection, and thermal management.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3