Freeze Metal Halide Perovskite for Dramatic Laser Tuning: Direct Observation via In Situ Cryo‐Electron Microscope

Author:

Li Jiayi12,Jiang Jing1,Zhang Yuchen1,Lin Zhenhui1,Pang Zhentao1,Guan Jie3,Liu Zhiyu1,Ren Yifeng1,Li Shiheng1,Lin Renxing1,Wu Jie14,Wang Jian1,Zhang Ziyou4,Dong Hongliang4,Chen Zhiqiang4,Wang Yuanyuan3,Yang Yurong1,Tan Hairen1,Zhu Jia1,Lu Zhenda1,Deng Yu1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

2. Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong 999077 China

3. State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China

4. Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China

Abstract

AbstractA frozen‐temperature (below −28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)’s stability and opto‐electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re‐crystallization/re‐growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low‐energy [100] facet to high‐energy [111], [‐211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden–Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo‐transmission electron microscope (cryo‐TEM) exploration at atomic resolution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3