Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells

Author:

Mann Dilpreet Singh1,Kwon Sung‐Nam1,Thakur Sakshi1,Patil Pramila1,Jeong Kwang‐Un2,Na Seok‐In1ORCID

Affiliation:

1. Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐Korea Jeonbuk National University 567, Baekje‐daero, Deokjin‐gu Jeonju‐si 54896 Republic of Korea

2. Department of Polymer‐Nano Science and Technology Department of Nano Convergence Engineering Jeonbuk National University Jeonju‐si 54896 Republic of Korea

Abstract

AbstractFor p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3+ and reacts with PbI in the perovskite, resulting in a large number of non‐radiative recombination sites. Among various transition metals, an ultra‐thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.

Funder

National Research Foundation of Korea

Korea Electric Power Corporation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3