Atomically Dispersed Ni–N4 Sites Assist Pt3Ni Nanocages with Pt Skin to Synergistically Enhance Oxygen Reduction Activity and Stability

Author:

Yan Wei1,Guo Ouyang1,Xing Qianli2,Liao Meijing3,Shi Zhuang1,Feng Hao1,Zhang Yuexing4,Li Xiyou1,Chen Yanli1ORCID

Affiliation:

1. School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China

2. Department of Materials Science and Engineering Tufts University Medford MA 02155 USA

3. College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China

4. College of Chemistry and Chemical Engineering Dezhou University Dezhou 253023 P. R. China

Abstract

AbstractCurrently, the rarity and high cost of platinum (Pt)‐based electrocatalysts seriously limit their commercial application in fuel cells cathode. Decorating Pt with atomically dispersed metal–nitrogen sites possibly offers an effective pathway to synergy tailor their catalytic activity and stability. Here active and stable oxygen reduction reaction (ORR) electrocatalysts (Pt3Ni@Ni–N4–C) by in situ loading Pt3Ni nanocages with Pt skin on single‐atom nickel–nitrogen (Ni–N4) embedded carbon supports are designed and constructed. The Pt3Ni@Ni–N4–C exhibits excellent mass activity (MA) of 1.92 A mgPt−1 and specific activity of 2.65 mA cmPt−2, together with superior durability of 10 mV decay in half‐wave potential and only 2.1% loss in MA after 30 000 cycles. Theoretical calculations demonstrate that Ni–N4 sites significant redistribute of electrons and make them transfer from both the adjacent carbon and Pt atoms to the Ni–N4. The resultant electron accumulation region successfully anchored Pt3Ni, that not only improves structural stability of the Pt3Ni, but importantly makes the surface Pt more positive to weaken the adsorption of *OH to enhance ORR activity. This strategy lays the groundwork for the development of super effective and durable Pt‐based ORR catalysts.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3